厦大讲座网

Uniqueness of closed self-similar solutions to $\sigma_k^{\alpha}$-curvature flow

类别:学术讲座
时间:2017-12-08 15:30:00
校区:思明校区
地点:海韵行政楼B313
主讲人/主办人:马辉 教授
主讲人信息:马辉博士,教授,2000年于北京大学数学学院获得理学博士学位,先后在清华大学、美国麻州州立大学Amherst分校作博士后研究。2004年6月起在清华任教。研究方向为微分几何。在Bull. Lond. Math. Soc.,J. Differential Geom., Ann. Global Anal. Geom.等期刊发表论文二十余篇。

背景资料:We study the systole function along Weil-Petersson geodesics. We show that the square root of the systole function is uniform Lipschitz on the Teichmuller space endowed with the Weil-Petersson metric. As an application, we study the growth of the Weil-Petersson inradius of the moduli space of Riemann surfaces of genus $g$ with $n$ punctures as a function of $g$ and $n$. We show that the Weil-Petersson inradius is comparable to $\sqrt{\ln{g}}$ with respect to $g$, and is comparable to $1$ with respect to $n$.
讲座来源